Modeling Hypoxia & Ecological Responses to Climate & Nutrients

M.Kemp¹, W.Boynton², D.DiToro³, K.Fennel⁴, M.Li¹, L.Murray¹, E.North¹, D.Secor² (¹UMCES HPL, ²UMCES CBL, ³U of Del, ⁴Dalhousie U)

Structure of CHRP:CB Research Program

• Simulation Studies (Prognostic)

(1) Predicting hypoxia scenarios at seasonal & interannual scales

(2) Formal parameter optimization to improve model skill

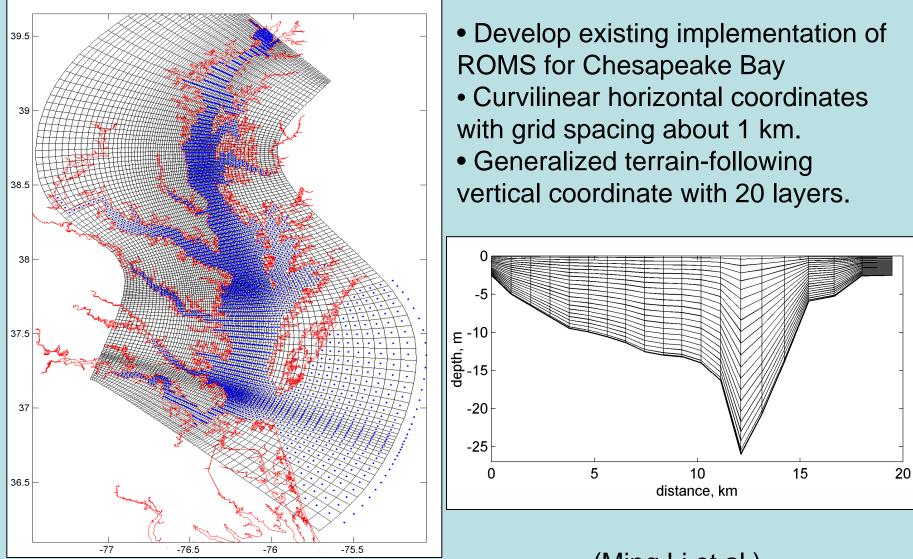
(3) Incorporating uncertainty w/ ensemble simulations

Diagnostic Assessment

(3a) Understanding climate & nutrient input controls on hypoxia(3b) Simulating ecosystem processes & feedback regulation

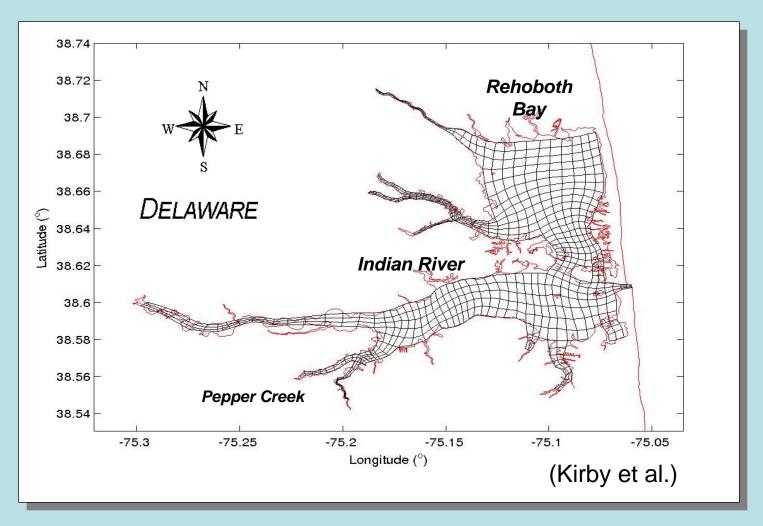
Retrospective Analysis

(4) Focus on mechanisms controlling hypoxia in CB & DIB

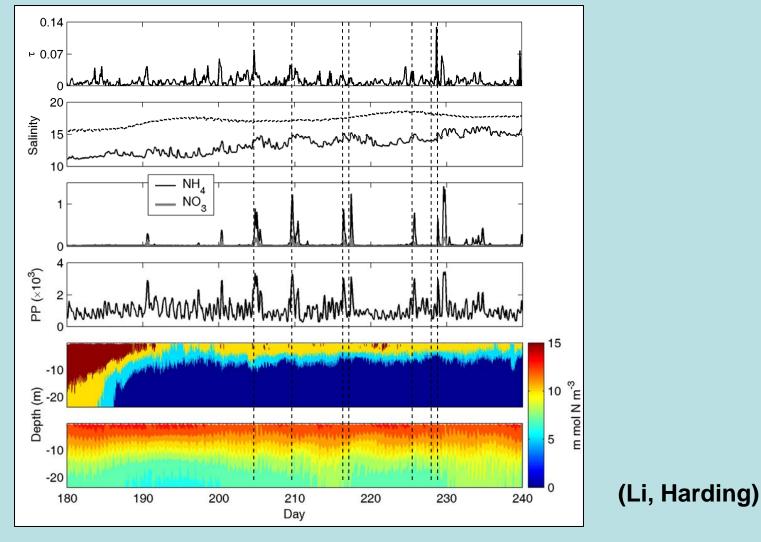

(5) Understand "Regime Shift" in hypoxia per unit nutrient load

Habitat Evaluation

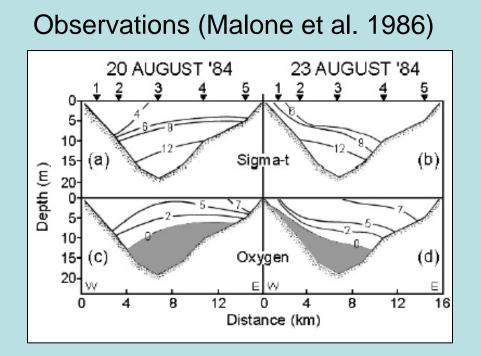
(6) Fish/Invert habitat & "production" responses to climate & mgmt?


Science Education Outreach

Configuration of ROMS model for Chesapeake Bay


(Ming Li et al.)

Delaware Inland Bays ROMS Grid

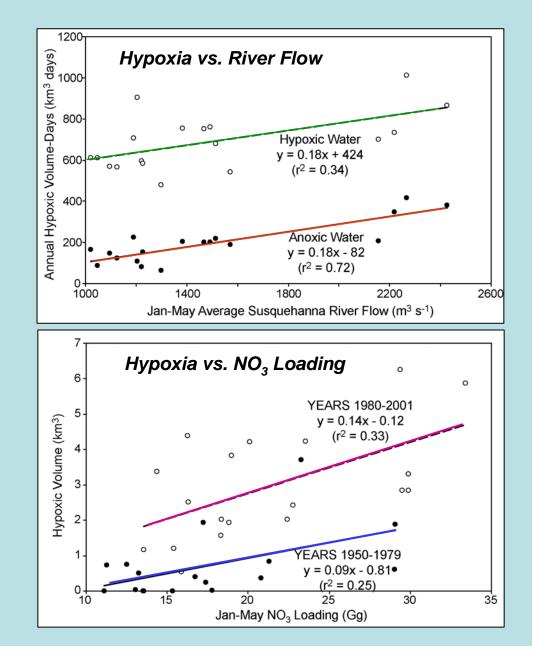

- Existing implementation of ROMS for Delaware Inland Bays
- Eutrophic lagoonal system with mean depth ~ 2 m
- Problems documented with diel cycling hypoxia

Diagnostic Analysis: Event-Enhanced Production

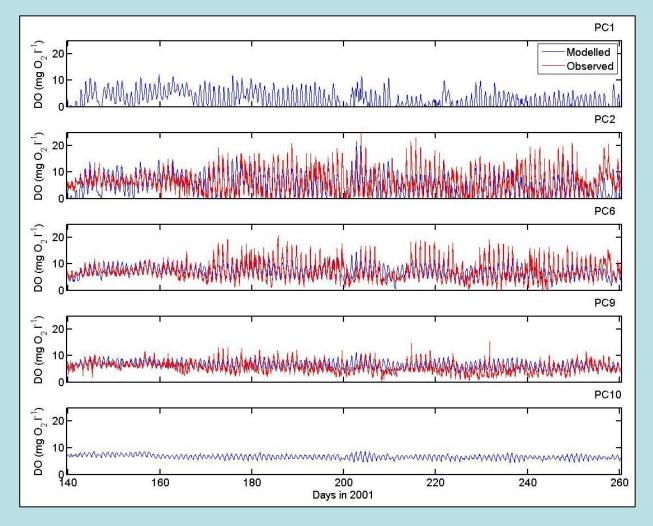
- Simulation experiments to understand wind-forced productivity.
- Vertical wind mixing stimulates lateral nutrient upwelling
- Model experiments deepen understanding of ecological processes

Forecasting: Event Induced Pycnocline Tilting

Model captures observed lateral 'seiching' driven by wind events
Seiching causes upwelling of hypoxic water onto shallow flanks
Large ecological & economic impacts result from events windstress 0.2 -0.2 185 187 189 191 193 195 197 day in 1996 0 с-10 , -10 debth 15 (b) -20 -25 0 -5 depth, m 10-10 15 13.5 (c) -20 -25 -76.35 -76.3 -76.25 Longitude (°N)

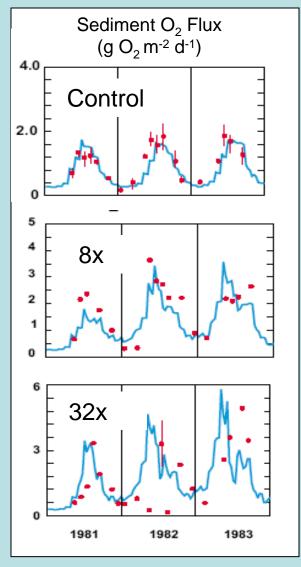

Model Hindcast

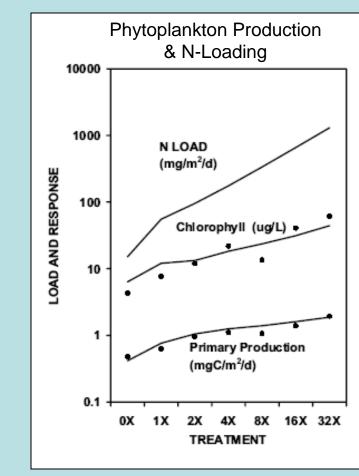
(Li, Kemp, Boynton)


Retrospective Analysis: CB Hypoxia Regime Shift

- Volumes of summer hypoxic $(O_2 < 1 \text{ mg/L})$ and anoxic $(O_2 < 0.5 \text{ mg/L})$ clearly related to winter-spring river flow.
- Abrupt increase in slope of time trend from 1950-1980 (blue line) to 1980-2003 (magenta line). Currently, there is more hypoxia per unit NO₃ Loading.
- What factors have contributed to this abrupt "regime shift" leading to more hypoxia per loading?
- Novel approaches are needed to simulate these dynamics

(Kemp, Boynton, et al.)

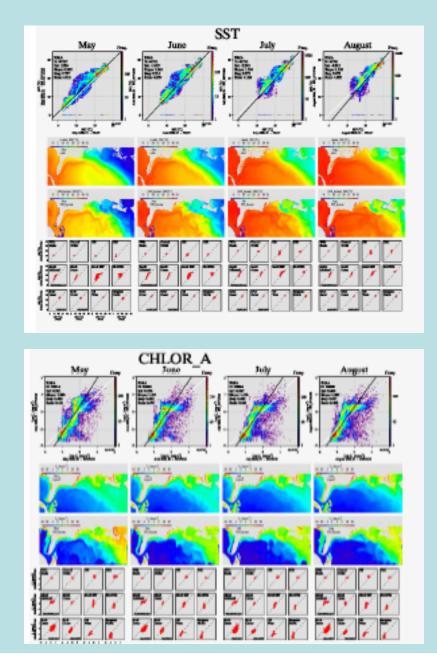

Forecasting & Diagnostics: Diel O₂ in DIB



- Diel variations in O₂ reveal night time hypoxia common in summer
- Existing water quality models (blue) do not capture dynamics
- New ROMS biophysical model simulates these patterns well

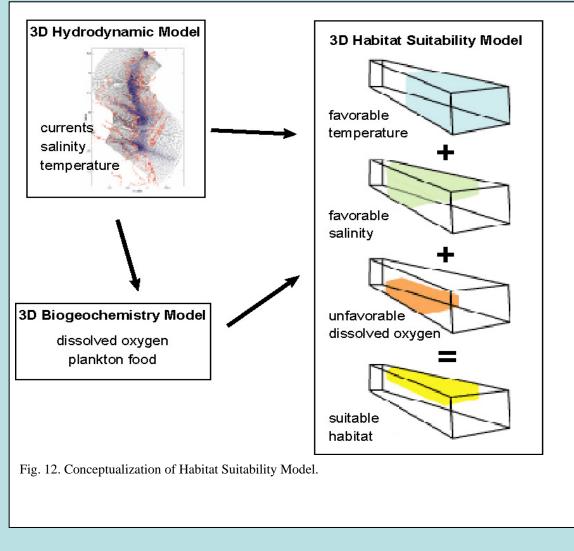
(Kirby, DiToro, Kemp)

Forecasting: Using Assimilation of MERL Data to Calibrate Biogeochemical Model



Use zero-dimensional models of experimental ecosystems to optimize parameter set and test model uncertainty

(DiToro, Fennel, Kemp)


Forecasting: Data Assimilation

Basic scheme for non-linear parameter optimization: Initial parameter estimates Model fields Model Parameters forward -fxn. parameters model -initial & boundary conditions data Improve parameters Sensitivity of Computed cost cost fxn. J to function, J adjoint parameters model If ΔJ<ε; stop

(Katja Fennel)

Habitat Assessment: Suitability Models

(North, Secor)

Sequencing CHRP Research Effort

Milestone Chart: NOAA CHRP 07, Kemp et al.

Task	Responsible PIs	Year 1			Year 2				Year 3				Year 4				Year 5				
		L	- 2	- 3	-4	1	- 2	3	4	1	-2	3	4	1	-2	3	4	1	2	3	4
Retrospective analysis																					
	Boynton, Kemp																				
Develop GAM & CART	Boynton, Kemp																				
Develop ARMA models	Kemp, DiToro																				
Test statistical models	Kemp, Boynton																				
Diagnostic assessment																					
Climate response	Li, Kemp,																				
Nutrient response	Kemp, Li,																				
Non-linear hypoxia	Kemp, DiToro																				
Hypoxia, upwelling & diel	DiToro, Li, Kemp																				
Forecasting studies																					
Stat model forecasts	Boynton, Kemp																				
ROMS devel (CB, DIB)	Li, DiToro																				
RCA calibrate (CB, DIB)	Fennel,																				
ROMS-RCA coupling	Li, Fennel, DiToro																				
Ensemble simulations	DiToro, Li, Fennel																				
Model skill evaluation	Fennel, Li, DiToro																				
Nutrient-climate scenarios	Li, DiToro, Kemp																				
Habitat Evaluation																					
Habitat suitability model	North, Secor																				
Bioenergetic model	Secor, North																				
Habitat/productn scenarios	North, Secor																				
Integration & Communicati	on																				
Education Outreach	LM, All																				
Meetings of PIs, managers	All					_															
Website forecasts, analyses	All																				
Synthetic analysis & writing	All																				

Concluding Comments

• We have successfully completed the first year of this study (despite severe budget cuts).

• *Simulation Studies* linking ROMS-RCA model are complete & data assimilation for parameter optimization & model error are underway.

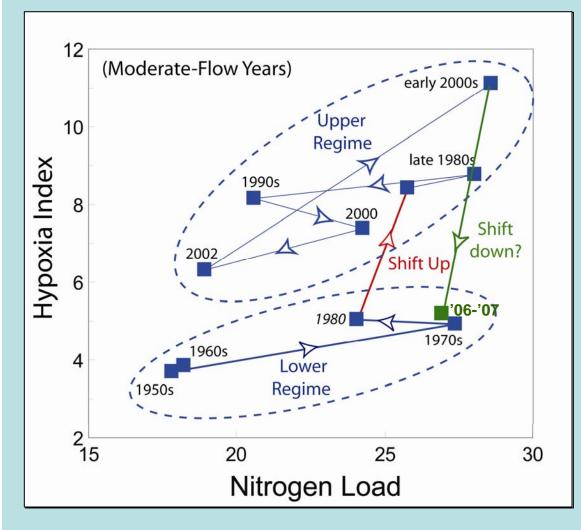
• *Diagnostic Modeling* studies have revealed mechanisms by which wind regulates vertical mixing and channel-flank coupling.

• *Retrospective Analysis* has led to improved understanding of the controls on "Regime Shift" in hypoxia per nutrient loading—key biogeochemical processes have been identified.

• *Habitat Evaluation* has effectively generated oyster habitat models using particle tracking model as basis.

• Science Education Outreach has engaged HS teachers into research program and provided online lesson plans and activities.

Epilogue: Biogeochemical Mechanism for Hypoxia-Nitrogen Regime Shift

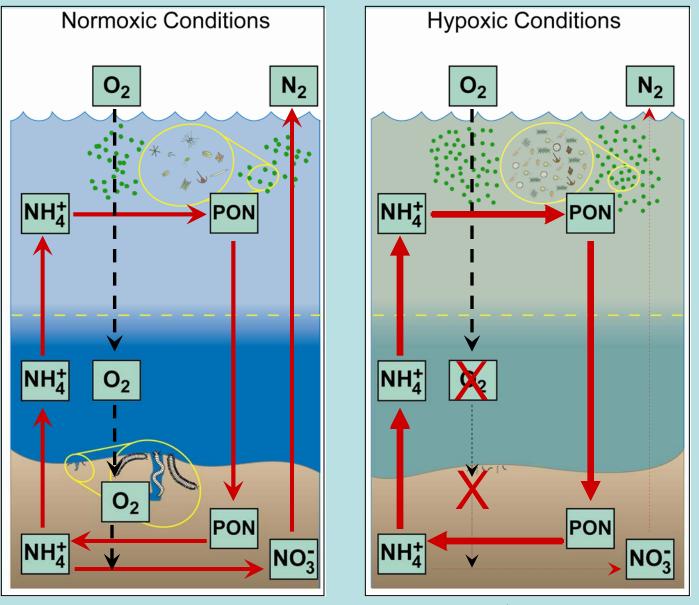

• Hypothesized that extended low-O₂ conditions has led to higher fraction of N-loading being recycled to reinforce phytoplankton growth and eutrophication process.

• This because coupled nitrification-denitrification is lost, and more of NH₄ produced in bottom respiration is recycled to overlying water rather than being transformed to bio-unavailable N₂ in denitrification.

• In addition, hypoxia-caused loss of benthic macrofauna eliminates their bio-irrigation processes that enhance nitrification-denitrification.

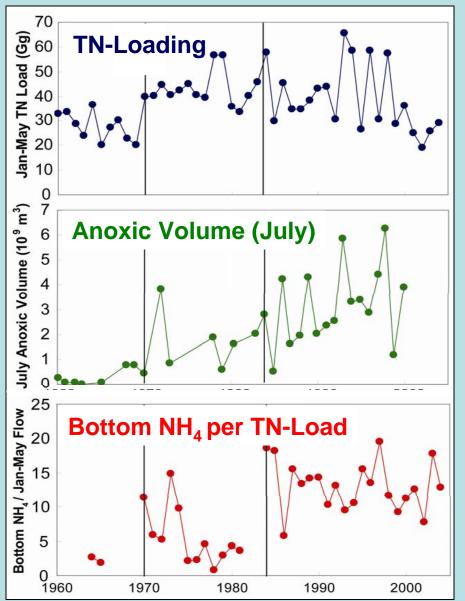
• Analysis of historical data bears this out, and these mechanisms are being added to forecasting models to improve model skill and application for management-relevant scenario simulations.

"Regime Shift" for Hypoxia per N-Load



•Hypoxia volume generally related to Nitrogen loading

 In early 1980s, relation between hypoxia & N-load jumped to upper regime, with 2-3x more hypoxia per N-load


•Many contemporaneous changes in ecosystem; are there parallel biogeochemical feedbacks that would help simulate pattern?

Hypothesis for Hypoxia-Enhanced N-Recycling

(J. Testa & M. Kemp 2009)

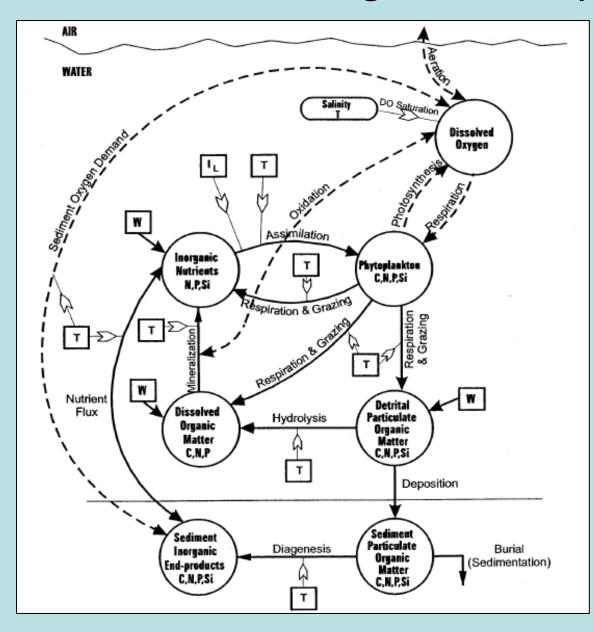
Shift in Bottom Water NH₄ Pool Tracks Hypoxia per Nutrient Loading

• TN-loading increases until mid-1980s, then fluctuates & declines

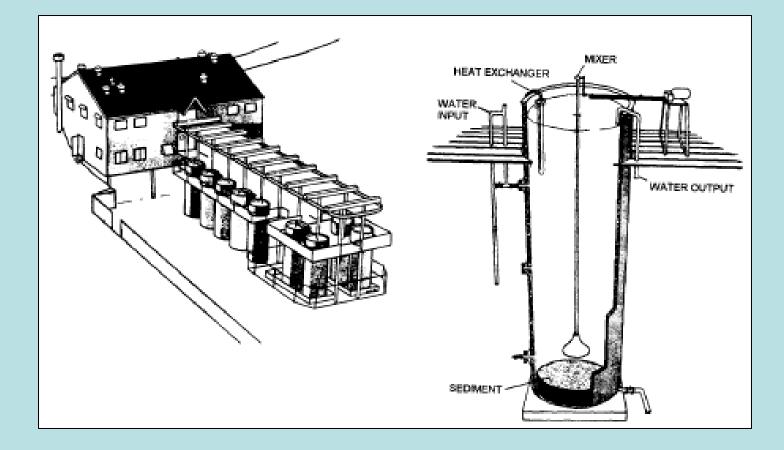
• Anoxia volume fluctuates, but increases steadily into 2000s.

•Bottom-water NH₄ pool per N-load fluctuations & jumps up in 1980s

Significant Shift in Bottom Water NH₄ Pools Since Early 1980s

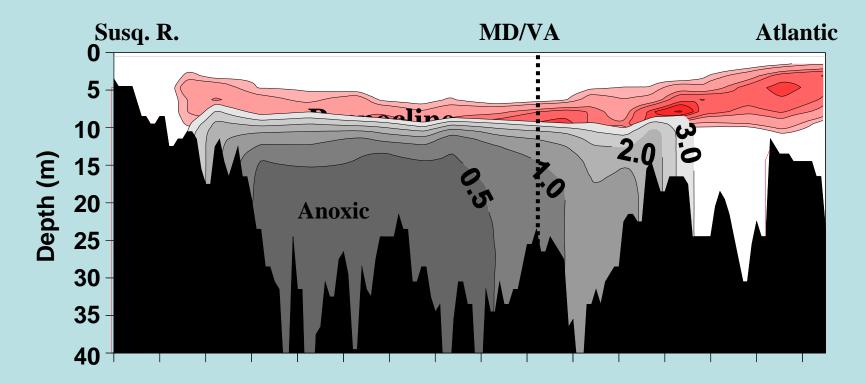

•Bottom-water NH₄ pools generally increase with TN loading.

• In early 1980s the size of the bottom NH₄ pools increased (>2x) abruptly

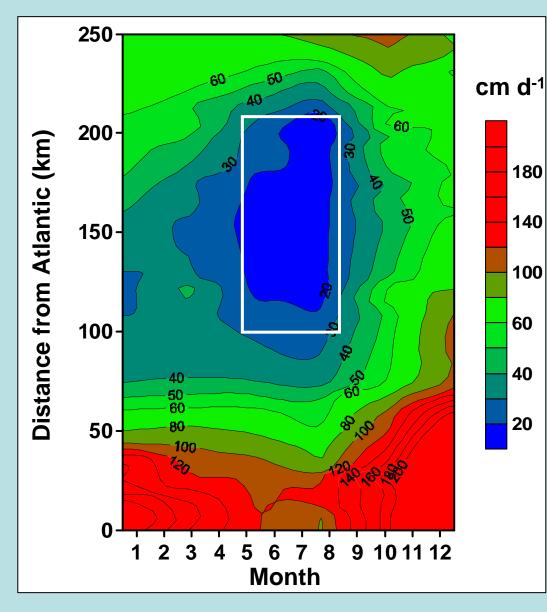

•Biogeochemical change (hypoxia, macrofauna?)

Other Slides that "Missed the Cut"

Simplified Schematic of Ecological Model (RCA)

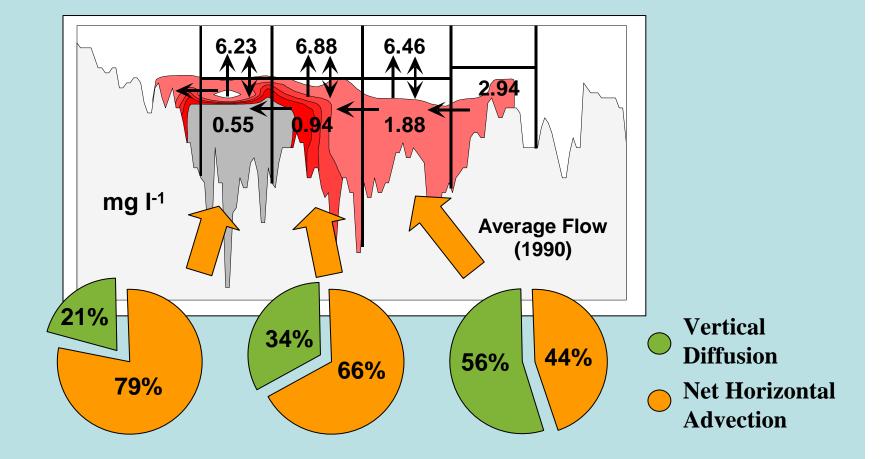


Calibrating RCA with MERL (drawing of facility)


MERL Experimental Ecosystems, URI (Nixon, Oviatt et al.)

Stratification Control of Hypoxic Region in Chesapeake Bay

DO declines along landward advecting flow ...


Vertical Exchange between Upper & Lower Layers of Chesapeake Bay

- Vertical exchange is minimal in mid-Bay from May-August
- Corresponds to location and duration of hypoxia (white box).
- How does it vary interannually?

(Hagy 2002)

Sources of Oxygen Replenishment in Hypoxic Bottom-Layer of Mid Chesapeake Bay

